Intermediately Synchronised Brain States optimise Trade-off between Subject Identifiability and Predictive Capacity

JÜLICH FORSCHUNGSZENTRUM

10.1101/2022.09.30.5

biorxiv

THE PREPRINT SERVER FOR BIOLOGY

Leonard Sasse^{1, 2}, Daouia I. Larabi^{1, 2}, Amir Omidvarnia^{1, 2}, Kyesam Jung^{1, 2}, Felix Hoffstaedter^{1, 2}, Gerhard Jocham³, Simon B. Eickhoff^{1, 2}, and Kaustubh R. Patil ^{1, 2}

¹Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; ²Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; ³Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; I.sasse@fz-juelich.de

Introduction

- Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas [1].
- To study temporal fluctuations in FC researchers have proposed the computation of an edge time series (ETS) and their derivatives.
- Evidence suggests that FC is driven by a few time frames of highamplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences [2].
- It remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question in the Human Connectome Project (HCP) dataset [3]

Methods

Results

Subject Identifiability

Prediction of Cognition

Prediction of Age and Sex

Correlation to Structural Connectivity

Discussion

- Intermediate levels of co-fluctuation yield highest subject identifiability and predictive capacity.
- Assessments of subject identifiability provide more robust conclusions when multiple metrics are used.
- Results may inform future preprocessing strategies aiming at identifying robust brain-based biomarkers.

References

[1] Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. *Magnetic Resonance in Medicine* **34**, 537–541 (1995).

[2] Zamani Esfahlani, F. et al. High-amplitude cofluctuations in cortical activity drive functional connectivity.
Proceedings of the National Academy of Sciences of the United States of America 117, 28393–28401 (2020).
[3] Van Essen, D. C. et al. The WU-minn human connectome project: An overview. Neuroimage 80, 62–79 (2013).